Algorithms for Reinforcement Learning


Author: Csaba Szepesvari
Publisher: Morgan & Claypool Publishers
ISBN: 1608454924
Category: Computers
Page: 89
View: 7960

Continue Reading →

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming.We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.

Algorithms for Reinforcement Learning


Author: Csaba Szepesvari
Publisher: Morgan & Claypool Publishers
ISBN: 1608454932
Category: Computers
Page: 103
View: 8243

Continue Reading →

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Algorithms for Reinforcement Learning


Author: Csaba Szepesvari
Publisher: N.A
ISBN: 9781681732138
Category: Computers
Page: 103
View: 8990

Continue Reading →

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Planning with Markov Decision Processes

An AI Perspective
Author: Mausam,Andrey Kolobov
Publisher: Morgan & Claypool Publishers
ISBN: 1608458865
Category: Computers
Page: 194
View: 5597

Continue Reading →

Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are actively researched in two related subareas of AI, probabilistic planning and reinforcement learning. Probabilistic planning assumes known models for the agent's goals and domain dynamics, and focuses on determining how the agent should behave to achieve its objectives. On the other hand, reinforcement learning additionally learns these models based on the feedback the agent gets from the environment. This book provides a concise introduction to the use of MDPs for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms. We first describe the theoretical foundations of MDPs and the fundamental solution techniques for them. We then discuss modern optimal algorithms based on heuristic search and the use of structured representations. A major focus of the book is on the numerous approximation schemes for MDPs that have been developed in the AI literature. These include determinization-based approaches, sampling techniques, heuristic functions, dimensionality reduction, and hierarchical representations. Finally, we briefly introduce several extensions of the standard MDP classes that model and solve even more complex planning problems. Table of Contents: Introduction / MDPs / Fundamental Algorithms / Heuristic Search Algorithms / Symbolic Algorithms / Approximation Algorithms / Advanced Notes

Introduction to Semi-supervised Learning


Author: Xiaojin Zhu,Andrew B. Goldberg
Publisher: Morgan & Claypool Publishers
ISBN: 1598295470
Category: Computers
Page: 116
View: 7841

Continue Reading →

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook

Lifelong Machine Learning


Author: Zhiyuan Chen,Bing Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1681731819
Category: Computers
Page: 145
View: 2992

Continue Reading →

Lifelong Machine Learning (or Lifelong Learning) is an advanced machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, and uses it to help future learning. In the process, the learner becomes more and more knowledgeable and effective at learning. This learning ability is one of the hallmarks of human intelligence. However, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model. It makes no attempt to retain the learned knowledge and use it in future learning. Although this isolated learning paradigm has been very successful, it requires a large number of training examples, and is only suitable for well-defined and narrow tasks. In comparison, we humans can learn effectively with a few examples because we have accumulated so much knowledge in the past which enables us to learn with little data or effort. Lifelong learning aims to achieve this capability. As statistical machine learning matures, it is time to make a major effort to break the isolated learning tradition and to study lifelong learning to bring machine learning to new heights. Applications such as intelligent assistants, chatbots, and physical robots that interact with humans and systems in real-life environments are also calling for such lifelong learning capabilities. Without the ability to accumulate the learned knowledge and use it to learn more knowledge incrementally, a system will probably never be truly intelligent. This book serves as an introductory text and survey to lifelong learning.

Active Learning


Author: Burr Settles
Publisher: Morgan & Claypool Publishers
ISBN: 1608457265
Category: Computers
Page: 114
View: 2751

Continue Reading →

The key idea behind active learning is that a machine learning algorithm can perform better with less training if it is allowed to choose the data from which it learns. An active learner may pose "queries," usually in the form of unlabeled data instances to be labeled by an "oracle" (e.g., a human annotator) that already understands the nature of the problem. This sort of approach is well-motivated in many modern machine learning and data mining applications, where unlabeled data may be abundant or easy to come by, but training labels are difficult, time-consuming, or expensive to obtain. This book is a general introduction to active learning. It outlines several scenarios in which queries might be formulated, and details many query selection algorithms which have been organized into four broad categories, or "query selection frameworks." We also touch on some of the theoretical foundations of active learning, and conclude with an overview of the strengths and weaknesses of these approaches in practice, including a summary of ongoing work to address these open challenges and opportunities. Table of Contents: Automating Inquiry / Uncertainty Sampling / Searching Through the Hypothesis Space / Minimizing Expected Error and Variance / Exploiting Structure in Data / Theory / Practical Considerations

Reinforcement Learning

State-of-the-Art
Author: Marco Wiering,Martijn van Otterlo
Publisher: Springer Science & Business Media
ISBN: 3642276458
Category: Computers
Page: 638
View: 2910

Continue Reading →

Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Reinforcement and Systemic Machine Learning for Decision Making


Author: Parag Kulkarni
Publisher: John Wiley & Sons
ISBN: 1118271556
Category: Technology & Engineering
Page: 312
View: 9844

Continue Reading →

Reinforcement and Systemic Machine Learning for Decision Making There are always difficulties in making machines that learn from experience. Complete information is not always available—or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm—creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new and growing field, Reinforcement and Systemic Machine Learning for Decision Making focuses on the specialized research area of machine learning and systemic machine learning. It addresses reinforcement learning and its applications, incremental machine learning, repetitive failure-correction mechanisms, and multiperspective decision making. Chapters include: Introduction to Reinforcement and Systemic Machine Learning Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning Systemic Machine Learning and Model Inference and Information Integration Adaptive Learning Incremental Learning and Knowledge Representation Knowledge Augmentation: A Machine Learning Perspective Building a Learning System With the potential of this paradigm to become one of the more utilized in its field, professionals in the area of machine and systemic learning will find this book to be a valuable resource.

Multi-Objective Decision Making


Author: Diederik M. Roijers,Shimon Whiteson
Publisher: Morgan & Claypool Publishers
ISBN: 1681731827
Category: Computers
Page: 129
View: 5124

Continue Reading →

Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs). First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the available information about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems. Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting. Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions.

Markov Logic

An Interface Layer for Artificial Intelligence
Author: Pedro Domingos,Daniel Lowd
Publisher: Morgan & Claypool Publishers
ISBN: 1598296922
Category: Computers
Page: 145
View: 4923

Continue Reading →

Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion

Reinforcement Learning and Dynamic Programming Using Function Approximators


Author: Lucian Busoniu,Robert Babuska,Bart De Schutter,Damien Ernst
Publisher: CRC Press
ISBN: 1351833820
Category: Computers
Page: 280
View: 1721

Continue Reading →

From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Essentials of Game Theory

A Concise Multidisciplinary Introduction
Author: Kevin Leyton-Brown,Yoav Shoham
Publisher: Morgan & Claypool Publishers
ISBN: 1598295942
Category: Computers
Page: 88
View: 1771

Continue Reading →

Game theory is the mathematical study of interaction among independent, self-interested agents. The audience for game theory has grown dramatically in recent years, and now spans disciplines as diverse as political science, biology, psychology, economics, linguistics, sociology, and computer science, among others. What has been missing is a relatively short introduction to the field covering the common basis that anyone with a professional interest in game theory is likely to require. Such a text would minimize notation, ruthlessly focus on essentials, and yet not sacrifice rigor. This Synthesis Lecture aims to fill this gap by providing a concise and accessible introduction to the field. It covers the main classes of games, their representations, and the main concepts used to analyze them.

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence


Author: Nikos Vlassis
Publisher: Morgan & Claypool Publishers
ISBN: 1598295268
Category: Computers
Page: 71
View: 1118

Continue Reading →

Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.

Markov Decision Processes in Artificial Intelligence


Author: Olivier Sigaud,Olivier Buffet
Publisher: John Wiley & Sons
ISBN: 1118620100
Category: Technology & Engineering
Page: 480
View: 4555

Continue Reading →

Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustrative applications.

Introduction to Intelligent Systems in Traffic and Transportation


Author: Ana L.C. Bazzan,Franziska Klügl
Publisher: Morgan & Claypool Publishers
ISBN: 1627052089
Category: Technology & Engineering
Page: 137
View: 9428

Continue Reading →

Urban mobility is not only one of the pillars of modern economic systems, but also a key issue in the quest for equality of opportunity, once it can improve access to other services. Currently, however, there are a number of negative issues related to traffic, especially in mega-cities, such as economical issues (cost of opportunity caused by delays), environmental (externalities related to emissions of pollutants), and social (traffic accidents). Solutions to these issues are more and more closely tied to information and communication technology. Indeed, a search in the technical literature (using the keyword ``urban traffic" to filter out articles on data network traffic) retrieved the following number of articles (as of December 3, 2013): 9,443 (ACM Digital Library), 26,054 (Scopus), and 1,730,000 (Google Scholar). Moreover, articles listed in the ACM query relate to conferences as diverse as MobiCom, CHI, PADS, and AAMAS. This means that there is a big and diverse community of computer scientists and computer engineers who tackle research that is connected to the development of intelligent traffic and transportation systems. It is also possible to see that this community is growing, and that research projects are getting more and more interdisciplinary. To foster the cooperation among the involved communities, this book aims at giving a broad introduction into the basic but relevant concepts related to transportation systems, targeting researchers and practitioners from computer science and information technology. In addition, the second part of the book gives a panorama of some of the most exciting and newest technologies, originating in computer science and computer engineering, that are now being employed in projects related to car-to-car communication, interconnected vehicles, car navigation, platooning, crowd sensing and sensor networks, among others. This material will also be of interest to engineers and researchers from the traffic and transportation community.

Statistical Reinforcement Learning

Modern Machine Learning Approaches
Author: Masashi Sugiyama
Publisher: CRC Press
ISBN: 1439856907
Category: Business & Economics
Page: 206
View: 7167

Continue Reading →

Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data. Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods. Covers the range of reinforcement learning algorithms from a modern perspective Lays out the associated optimization problems for each reinforcement learning scenario covered Provides thought-provoking statistical treatment of reinforcement learning algorithms The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques. This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.

General Game Playing


Author: Michael Genesereth,Michael Thielscher
Publisher: Morgan & Claypool Publishers
ISBN: 1627052569
Category: Computers
Page: 229
View: 5631

Continue Reading →

General game players are computer systems able to play strategy games based solely on formal game descriptions supplied at "runtime" (n other words, they don't know the rules until the game starts). Unlike specialized game players, such as Deep Blue, general game players cannot rely on algorithms designed in advance for specific games; they must discover such algorithms themselves. General game playing expertise depends on intelligence on the part of the game player and not just intelligence of the programmer of the game player. GGP is an interesting application in its own right. It is intellectually engaging and more than a little fun. But it is much more than that. It provides a theoretical framework for modeling discrete dynamic systems and defining rationality in a way that takes into account problem representation and complexities like incompleteness of information and resource bounds. It has practical applications in areas where these features are important, e.g., in business and law. More fundamentally, it raises questions about the nature of intelligence and serves as a laboratory in which to evaluate competing approaches to artificial intelligence. This book is an elementary introduction to General Game Playing (GGP). (1) It presents the theory of General Game Playing and leading GGP technologies. (2) It shows how to create GGP programs capable of competing against other programs and humans. (3) It offers a glimpse of some of the real-world applications of General Game Playing. Table of Contents: Preface / Introduction / Game Description / Game Management / Game Playing / Small Single-Player Games / Small Multiple-Player Games / Heuristic Search / Probabilistic Search / Propositional Nets / General Game Playing With Propnets / Factoring / Discovery of Heuristics / Logic / Analyzing Games with Logic / Solving Single-Player Games with Logic / Discovering Heuristics with Logic / Games with Incomplete Information / Games with Historical Constraints / Incomplete Game Descriptions / Advanced General Game Playing / Authors' Biographies

A Concise Introduction to Models and Methods for Automated Planning


Author: Hector Geffner,Blai Bonet
Publisher: Morgan & Claypool Publishers
ISBN: 1608459705
Category: Computers
Page: 141
View: 6395

Continue Reading →

Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography