Perspectives on Noncommutative Geometry


Author: Masoud Khalkhali
Publisher: American Mathematical Soc.
ISBN: 0821848496
Category: Mathematics
Page: 163
View: 9245

Continue Reading →

This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes' notion of spectral triples. Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume. This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.

Classical Algebraic Geometry

A Modern View
Author: Igor V. Dolgachev
Publisher: Cambridge University Press
ISBN: 1107017653
Category: Mathematics
Page: 639
View: 513

Continue Reading →

Makes classical algebraic geometry accessible to the modern mathematician.

Representation Theory and Complex Geometry


Author: Neil Chriss,victor ginzburg
Publisher: Springer Science & Business Media
ISBN: 0817649387
Category: Mathematics
Page: 495
View: 7123

Continue Reading →

"The book is largely self-contained...There is a nice introduction to symplectic geometry and a charming exposition of equivariant K-theory. Both are enlivened by examples related to groups...An attractive feature is the attempt to convey some informal ‘wisdom’ rather than only the precise definitions. As a number of results [are] due to the authors, one finds some of the original excitement. This is the only available introduction to geometric representation theory...it has already proved successful in introducing a new generation to the subject." (Bulletin of the AMS)

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik
Author: Detlef Laugwitz
Publisher: Springer-Verlag
ISBN: 3034889836
Category: Mathematics
Page: 348
View: 7228

Continue Reading →

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."

Moderne Algebra


Author: Bartel Eckmann L. Van der van der Waerden,Emil Artin,Emmy Noether
Publisher: Springer-Verlag
ISBN: 3662364344
Category: Mathematics
Page: 274
View: 9605

Continue Reading →

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Differentialgeometrie von Kurven und Flächen


Author: Manfredo P. do Carmo
Publisher: Springer-Verlag
ISBN: 3322850722
Category: Technology & Engineering
Page: 263
View: 1852

Continue Reading →

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Choice

A Classified Cumulation : Volumes 1-10, March 1964--February 1974
Author: Richard K. Gardner,Phyllis Grumm
Publisher: N.A
ISBN: N.A
Category: Best books
Page: N.A
View: 8794

Continue Reading →

Singularities of Differentiable Maps, Volume 1

Classification of Critical Points, Caustics and Wave Fronts
Author: V.I. Arnold,S.M. Gusein-Zade,Alexander N. Varchenko
Publisher: Springer Science & Business Media
ISBN: 0817683402
Category: Mathematics
Page: 282
View: 4660

Continue Reading →

​Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science. The three parts of this first volume of a two-volume set deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities. The second volume describes the topological and algebro-geometrical aspects of the theory: monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. The first volume has been adapted for the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level. With this foundation, the book's sophisticated development permits readers to explore more applications than previous books on singularities.

4000 Jahre Algebra

Geschichte – Kulturen – Menschen
Author: H.-W. Alten,A. Djafari Naini,B. Eick,M. Folkerts,H. Schlosser,K.-H. Schlote,H. Wesemüller-Kock,H. Wußing
Publisher: Springer-Verlag
ISBN: 3642382398
Category: Mathematics
Page: 745
View: 9927

Continue Reading →

Die Entstehung, Entwicklung und Wandlung der Algebra als Teil unserer Kulturgeschichte beschreiben Wissenschaftler von fünf Universitäten. Ursprünge, Anstöße und die Entwicklung algebraischer Begriffe und Methoden werden in enger Verflechtung mit historischen Ereignissen und menschlichen Schicksalen dargestellt. Ein erster Spannungsbogen reicht von den Frühformen des Rechnens mit natürlichen Zahlen und Brüchen zur Lösung einfacher Gleichungen bis hin zur Lösung von Gleichungen dritten und vierten Grades in der Renaissance. Von den misslungenen Versuchen zur Lösung allgemeiner Gleichungen höheren Grades im 17 Jh. zieht sich ein weiterer Bogen zu den berühmten Beweisen des Fundamentalsatzes der Algebra durch Gauß und den genialen Ideen des jungen Galois. Die Wandlung der Algebra von der Gleichungslehre zur Theorie algebraischer Strukturen wird danach ebenso beschrieben, wie die völlig neuen Akzente, die die Computeralgebra in neuester Zeit gesetzt hat. Viele neue farbige Abbildungen bereichern die inhaltlichen Aktualisierungen und Textergänzungen.

Der LaTeX-Begleiter


Author: Frank Mittelbach,Michel Goossens
Publisher: Pearson Deutschland GmbH
ISBN: 9783868940886
Category:
Page: 1137
View: 1031

Continue Reading →