A Mathematical Bridge

An Intuitive Journey in Higher Mathematics
Author: Stephen Fletcher Hewson
Publisher: World Scientific
ISBN: 9812834079
Category: Education
Page: 649
View: 2616

Continue Reading →

Although higher mathematics is beautiful, natural and interconnected, to the uninitiated it can feel like an arbitrary mass of disconnected technical definitions, symbols, theorems and methods. An intellectual gulf needs to be crossed before a true, deep appreciation of mathematics can develop. This book bridges this mathematical gap. It focuses on the process of discovery as much as the content, leading the reader to a clear, intuitive understanding of how and why mathematics exists in the way it does.The narrative does not evolve along traditional subject lines: each topic develops from its simplest, intuitive starting point; complexity develops naturally via questions and extensions. Throughout, the book includes levels of explanation, discussion and passion rarely seen in traditional textbooks. The choice of material is similarly rich, ranging from number theory and the nature of mathematical thought to quantum mechanics and the history of mathematics. It rounds off with a selection of thought-provoking and stimulating exercises for the reader.

Books in Print


Author: N.A
Publisher: N.A
ISBN: N.A
Category: American literature
Page: N.A
View: 7874

Continue Reading →

Books in print is the major source of information on books currently published and in print in the United States. The database provides the record of forthcoming books, books in-print, and books out-of-print.

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik
Author: Detlef Laugwitz
Publisher: Springer-Verlag
ISBN: 3034889836
Category: Mathematics
Page: 348
View: 6516

Continue Reading →

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."

Hidden Figures - Unerkannte Heldinnen


Author: Margot Lee Shetterly
Publisher: HarperCollins
ISBN: 3959676433
Category: History
Page: 416
View: 3761

Continue Reading →

1943 stellt das Langley Memorial Aeronautical Laboratory der NACA,die später zur NASA wird, erstmalig afroamerikanische Frauen ein. "Menschliche Rechner" - unter ihnen Dorothy Vaughan, die 1953 Vorgesetzte der brillanten afroamerikanischen Mathematikerin Katherine Johnson wird. Trotz Diskriminierung und Vorurteilen, treiben sie die Forschungen der NASA voran und Katherine Johnsons Berechnungen werden maßgeblich für den Erfolg der Apollo-Missionen. Dies ist ihre Geschichte. "Mit dieser unglaublich mitreißenden und vielschichtigen Erzählung zeigt Shetterly ihr Können. Die Geschichte begeistert in allen Aspekten." Booklist

Grundlagen der Linearen Algebra für Dummies


Author: Mary Jane Sterling
Publisher: VCH
ISBN: 9783527706204
Category:
Page: 342
View: 6516

Continue Reading →

Für so manchen Zeitgenossen ist das Land Mathematien wüst und grau und der Weg, die Lineare Algebra zu verstehen, ist besonders stolpersteinig und öd. Aber haben Sie erst einmal die Grundlagen verstanden, ist der Rest nur noch halb so schwer. Mary Jane Sterling hilft Ihnen in diesem Buch auf die Sprünge. Sie erklärt Ihnen, wie Sie mit Vektoren rechnen, die Matrizenalgebra meistern, Linearkombinationen in ihre Schranken weisen, sich behende im Vektorraum bewegen, Eigenwert und Eigenvektor zu guten Freunden machen und vieles mehr. Stellen Sie mit diesem Buch Ihre Kenntnisse der Linearen Algebra auf eine solide Grundlage.

Mathematik


Author: Timothy Gowers
Publisher: N.A
ISBN: 9783150187067
Category:
Page: 207
View: 4417

Continue Reading →

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie
Author: Jörg Bewersdorff
Publisher: Springer-Verlag
ISBN: 3658022620
Category: Mathematics
Page: 214
View: 9841

Continue Reading →

Dieses Buch ist eine leicht verständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Nachdem im 16. Jahrhundert allgemeine Lösungsformeln für Gleichungen dritten und vierten Grades gefunden wurden, schlugen entsprechende Bemühungen für Gleichungen fünften Grades fehl. Nach fast dreihundertjähriger Suche führte dies schließlich zur Begründung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdrücke lösbar ist. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint. In dieser Auflage wurde ein Kapitel ergänzt, in dem ein alternativer, auf Emil Artin zurückgehender Beweis des Hauptsatzes der Galois-Theorie wiedergegeben wird. Dieses Kapitel kann fast unabhängig von den anderen Kapiteln gelesen werden.

"Flatland"

ein Märchen mit vielerlei Dimensionen
Author: Edwin Abbott Abbott
Publisher: RaBaKa-Publishing
ISBN: 9783940185150
Category:
Page: 172
View: 4333

Continue Reading →

Operations Research

Einführung
Author: Frederick S. Hillier,Gerald J. Liebermann
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3486792083
Category: Business & Economics
Page: 868
View: 7752

Continue Reading →

Aus dem Inhalt: Was ist Operations Research? Überblick über die Modellierungsgrundsätze des Operations Research. Einführung in die lineare Programmierung. Die Lösung linearer Programmierungsprobleme: Das Simplexverfahren. Stochastische Prozesse. Warteschlangentheorie. Lagerhaltungstheorie. Prognoseverfahren. Markov-Entscheidungsprozesse. Reliabilität. Entscheidungstheorie. Die Theorie des Simplexverfahrens Qualitätstheorie und Sensitivitätsanalyse Spezialfälle linearer Programmierungsprobleme. Die Formulierung linearer Programmierungsmodelle und Goal-Programmierung. Weitere Algorithmen der linearen Programmierung. Netzwerkanalyse einschließlich PERT-CPM. Dynamische Optimierung. Spieltheorie. Ganzzahlige Programmierung. Nichtlineare Programmierung Simulation. Anhang. Lösungen für ausgewählte Übungsaufgaben.

Professor Stewarts mathematische Schätze


Author: Ian Stewart
Publisher: Rowohlt Verlag GmbH
ISBN: 3644017115
Category: Mathematics
Page: 432
View: 7311

Continue Reading →

Was war noch mal die Catalan’sche Vermutung? Und woher kommt eigentlich das Wurzelsymbol? Was hat die Zahl Pi mit dem Sternenhimmel zu tun? Wer erfand das Gleichheitszeichen? Der britische Matheguru Ian Stewart breitet in diesem Band Schätze aus, die er in Jahrzehnten gesammelt hat: über 180 interessante Matherätsel, Lösungen, Spiele, Tricks, Geschichten, Anekdoten und Logeleien. Zudem ist Stewarts Schatztruhe mit interessanten historischen Exkursen angereichert, zum Beispiel einer kurzen Einführung in das Rechnen der Maya und der alten Ägypter und auch in die Vergangenheit unseres eigenen Rechnens: Wer erfand das Gleichheitszeichen – und warum? Ein Buch zum Blättern und Stöbern, zum Spaßhaben und Dazulernen, für Laien und für Fortgeschrittene.

GAMMA

Eulers Konstante, Primzahlstrände und die Riemannsche Vermutung
Author: Julian Havil
Publisher: Springer-Verlag
ISBN: 3540484965
Category: Mathematics
Page: 302
View: 4419

Continue Reading →

Jeder kennt p = 3,14159..., viele kennen e = 2,71828..., einige i. Und dann? Die "viertwichtigste" Konstante ist die Eulersche Zahl g = 0,5772156... - benannt nach dem genialen Leonhard Euler (1707-1783). Bis heute ist unbekannt, ob g eine rationale Zahl ist. Das Buch lotet die "obskure" Konstante aus. Die Reise beginnt mit Logarithmen und der harmonischen Reihe. Es folgen Zeta-Funktionen und Eulers wunderbare Identität, Bernoulli-Zahlen, Madelungsche Konstanten, Fettfinger in Wörterbüchern, elende mathematische Würmer und Jeeps in der Wüste. Besser kann man nicht über Mathematik schreiben. Was Julian Havil dazu zu sagen hat, ist spektakulär.

Ebene algebraische Kurven


Author: Gerd Fischer
Publisher: Springer-Verlag
ISBN: 3322803112
Category: Mathematics
Page: 177
View: 5998

Continue Reading →

Neben den elementaren Dingen, wie Tangenten, Singularitäten und Wendepunkten werden auch schwierigere Begriffe wie lokale Zweige und Geschlecht behandelt. Höhepunkte sind die klassischen Formeln von Plücker und Clebsch, die Beziehungen zwischen verschiedenen globalen und lokalen Invarianten einer Kurve beschreiben.

Algorithmen - Eine Einführung


Author: Thomas H. Cormen,Charles E. Leiserson,Ronald Rivest,Clifford Stein
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110522012
Category: Computers
Page: 1339
View: 4569

Continue Reading →

Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.