**Author**: Yu. I. Manin

**Publisher:**Springer Science & Business Media

**ISBN:**1441906150

**Category:**Mathematics

**Page:**384

**View:**5397

Skip to content
# Search Results for: a-course-in-mathematical-logic-for-mathematicians-second-edition-graduate-texts-in-mathematics

**Author**: Yu. I. Manin

**Publisher:** Springer Science & Business Media

**ISBN:** 1441906150

**Category:** Mathematics

**Page:** 384

**View:** 5397

1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.

**Author**: Yu.I. Manin

**Publisher:** Springer Science & Business Media

**ISBN:** 1475743858

**Category:** Mathematics

**Page:** 288

**View:** 2475

1. This book is above all addressed to mathematicians. It is intended to be a textbook of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last ten or fifteen years. These include: the independence of the continuum hypothe sis, the Diophantine nature of enumerable sets, the impossibility of finding an algorithmic solution for one or two old problems. All the necessary preliminary material, including predicate logic and the fundamentals of recursive function theory, is presented systematically and with complete proofs. We only assume that the reader is familiar with "naive" set theoretic arguments. In this book mathematical logic is presented both as a part of mathe matics and as the result of its self-perception. Thus, the substance of the book consists of difficult proofs of subtle theorems, and the spirit of the book consists of attempts to explain what these theorems say about the mathematical way of thought. Foundational problems are for the most part passed over in silence. Most likely, logic is capable of justifying mathematics to no greater extent than biology is capable of justifying life. 2. The first two chapters are devoted to predicate logic. The presenta tion here is fairly standard, except that semantics occupies a very domi nant position, truth is introduced before deducibility, and models of speech in formal languages precede the systematic study of syntax.

**Author**: Shashi Mohan Srivastava

**Publisher:** Springer Science & Business Media

**ISBN:** 1461457467

**Category:** Mathematics

**Page:** 198

**View:** 1853

This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.

**Author**: J.D. Monk

**Publisher:** Springer Science & Business Media

**ISBN:** 146849452X

**Category:** Mathematics

**Page:** 532

**View:** 1175

From the Introduction: "We shall base our discussion on a set-theoretical foundation like that used in developing analysis, or algebra, or topology. We may consider our task as that of giving a mathematical analysis of the basic concepts of logic and mathematics themselves. Thus we treat mathematical and logical practice as given empirical data and attempt to develop a purely mathematical theory of logic abstracted from these data." There are 31 chapters in 5 parts and approximately 320 exercises marked by difficulty and whether or not they are necessary for further work in the book.

**Author**: P. T. Johnstone

**Publisher:** Cambridge University Press

**ISBN:** 9780521336925

**Category:** Mathematics

**Page:** 110

**View:** 9160

A succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. Suitable for all introductory mathematics undergraduates, Notes on Logic and Set Theory covers the basic concepts of logic: first-order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. Successive chapters examine the recursive functions, the axiom of choice, ordinal and cardinal arithmetic, and the incompleteness theorems. Dr. Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics.

**Author**: Peter G. Hinman

**Publisher:** CRC Press

**ISBN:** 1439864276

**Category:** Mathematics

**Page:** 896

**View:** 1078

This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.

**Author**: P.J. Hilton,Urs Stammbach

**Publisher:** Springer Science & Business Media

**ISBN:** 146849936X

**Category:** Mathematics

**Page:** 340

**View:** 5288

In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

**Author**: J. Barwise

**Publisher:** Elsevier

**ISBN:** 9780080933641

**Category:** Mathematics

**Page:** 1164

**View:** 389

The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.

**Author**: Ian Chiswell,Wilfrid Hodges

**Publisher:** Oxford University Press on Demand

**ISBN:** 0198571003

**Category:** Mathematics

**Page:** 250

**View:** 8566

Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't becalculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assumingMatiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics andcomputer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic,Mathematics, Philosophy, and Computer Science.
*To Truth Through Proof*

**Author**: Peter B. Andrews

**Publisher:** Springer Science & Business Media

**ISBN:** 9401599343

**Category:** Mathematics

**Page:** 390

**View:** 2949

In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

**Author**: F. William Lawvere,Robert Rosebrugh

**Publisher:** Cambridge University Press

**ISBN:** 9780521010603

**Category:** Mathematics

**Page:** 261

**View:** 790

In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.

**Author**: Saunders MacLane

**Publisher:** Springer Science & Business Media

**ISBN:** 1461298393

**Category:** Mathematics

**Page:** 262

**View:** 6482

Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint pair of functors. This appears in many substantially equivalent forms: That of universal construction, that of direct and inverse limit, and that of pairs offunctors with a natural isomorphism between corresponding sets of arrows. All these forms, with their interrelations, are examined in Chapters III to V. The slogan is "Adjoint functors arise everywhere". Alternatively, the fundamental notion of category theory is that of a monoid -a set with a binary operation of multiplication which is associative and which has a unit; a category itself can be regarded as a sort of general ized monoid. Chapters VI and VII explore this notion and its generaliza tions. Its close connection to pairs of adjoint functors illuminates the ideas of universal algebra and culminates in Beck's theorem characterizing categories of algebras; on the other hand, categories with a monoidal structure (given by a tensor product) lead inter alia to the study of more convenient categories of topological spaces.

**Author**: Melvin Fitting

**Publisher:** Springer Science & Business Media

**ISBN:** 1468403575

**Category:** Mathematics

**Page:** 242

**View:** 4864

There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scientists. Although there is a common core to all such books they will be very dif ferent in emphasis, methods, and even appearance. This book is intended for computer scientists. But even this is not precise. Within computer sci ence formal logic turns up in a number of areas, from program verification to logic programming to artificial intelligence. This book is intended for computer scientists interested in automated theorem proving in classical logic. To be more precise yet, it is essentially a theoretical treatment, not a how-to book, although how-to issues are not neglected. This does not mean, of course, that the book will be of no interest to philosophers or mathematicians. It does contain a thorough presentation of formal logic and many proof techniques, and as such it contains all the material one would expect to find in a course in formal logic covering completeness but not incompleteness issues. The first item to be addressed is, what are we talking about and why are we interested in it. We are primarily talking about truth as used in mathematical discourse, and our interest in it is, or should be, self-evident. Truth is a semantic concept, so we begin with models and their properties. These are used to define our subject.

**Author**: George Tourlakis

**Publisher:** Cambridge University Press

**ISBN:** 9781139439428

**Category:** Mathematics

**Page:** N.A

**View:** 5923

This two-volume work bridges the gap between introductory expositions of logic or set theory on one hand, and the research literature on the other. It can be used as a text in an advanced undergraduate or beginning graduate course in mathematics, computer science, or philosophy. The volumes are written in a user-friendly conversational lecture style that makes them equally effective for self-study or class use. Volume 1 includes formal proof techniques, a section on applications of compactness (including nonstandard analysis), a generous dose of computability and its relation to the incompleteness phenomenon, and the first presentation of a complete proof of Godel's 2nd incompleteness since Hilbert and Bernay's Grundlagen theorem.

**Author**: Michael L. O'Leary

**Publisher:** John Wiley & Sons

**ISBN:** 1118548019

**Category:** Mathematics

**Page:** 464

**View:** 3854

A mathematical introduction to the theory and applications of logic and set theory with an emphasis on writing proofs Highlighting the applications and notations of basic mathematical concepts within the framework of logic and set theory, A First Course in Mathematical Logic and Set Theory introduces how logic is used to prepare and structure proofs and solve more complex problems. The book begins with propositional logic, including two-column proofs and truth table applications, followed by first-order logic, which provides the structure for writing mathematical proofs. Set theory is then introduced and serves as the basis for defining relations, functions, numbers, mathematical induction, ordinals, and cardinals. The book concludes with a primer on basic model theory with applications to abstract algebra. A First Course in Mathematical Logic and Set Theory also includes: Section exercises designed to show the interactions between topics and reinforce the presented ideas and concepts Numerous examples that illustrate theorems and employ basic concepts such as Euclid’s lemma, the Fibonacci sequence, and unique factorization Coverage of important theorems including the well-ordering theorem, completeness theorem, compactness theorem, as well as the theorems of Löwenheim–Skolem, Burali-Forti, Hartogs, Cantor–Schröder–Bernstein, and König An excellent textbook for students studying the foundations of mathematics and mathematical proofs, A First Course in Mathematical Logic and Set Theory is also appropriate for readers preparing for careers in mathematics education or computer science. In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.

**Author**: Haimanti Sarbadhikari,Shashi Mohan Srivastava

**Publisher:** Springer

**ISBN:** 9811050988

**Category:** Mathematics

**Page:** 291

**View:** 1800

This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work.
*Exploring Independence and Truth*

**Author**: Ralf Schindler

**Publisher:** Springer

**ISBN:** 3319067257

**Category:** Mathematics

**Page:** 332

**View:** 3053

This textbook gives an introduction to axiomatic set theory and examines the prominent questions that are relevant in current research in a manner that is accessible to students. Its main theme is the interplay of large cardinals, inner models, forcing and descriptive set theory. The following topics are covered: • Forcing and constructability • The Solovay-Shelah Theorem i.e. the equiconsistency of ‘every set of reals is Lebesgue measurable’ with one inaccessible cardinal • Fine structure theory and a modern approach to sharps • Jensen’s Covering Lemma • The equivalence of analytic determinacy with sharps • The theory of extenders and iteration trees • A proof of projective determinacy from Woodin cardinals. Set Theory requires only a basic knowledge of mathematical logic and will be suitable for advanced students and researchers.

**Author**: Alonzo Church,Clifford Truesdell

**Publisher:** N.A

**ISBN:** N.A

**Category:** Logic, Symbolic and mathematical

**Page:** 168

**View:** 985

**Author**: Christopher C. Leary,Lars Kristiansen

**Publisher:** Lulu.com

**ISBN:** 1942341075

**Category:**

**Page:** 380

**View:** 8008

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Godel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises."

**Author**: Nik Weaver

**Publisher:** World Scientific

**ISBN:** 9814566020

**Category:** Mathematics

**Page:** 152

**View:** 4511

Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics. Contents:Peano ArithmeticZermelo–Fraenkel Set TheoryWell-Ordered SetsOrdinalsCardinalsRelativizationReflectionForcing NotionsGeneric ExtensionsForcing EqualityThe Fundamental TheoremForcing CHForcing ¬ CHFamilies of Entire Functions*Self-Homeomorphisms of βℕ \ ℕ, I*Pure States on B(H)*The Diamond PrincipleSuslin's Problem, I*Naimark's problem*A Stronger DiamondWhitehead's Problem, I*Iterated ForcingMartin's AxiomSuslin's Problem, II*Whitehead's Problem, II*The Open Coloring AxiomSelf-Homeomorphisms of βℕ \ ℕ, II*Automorphisms of the Calkin Algebra, I*Automorphisms of the Calkin Algebra, II*The Multiverse Interpretation Readership: Graduates and researchers in logic and set theory, general mathematical audience. Keywords:Forcing;Set Theory;Consistency;Independence;C*-AlgebraKey Features:A number of features combine to make this thorough and rigorous treatment of forcing surprisingly easy to follow. First, it goes straight into the core material on forcing, avoiding Godel constructibility altogether; second, key definitions are simplified, allowing for a less technical development; and third, further care is given to the treatment of metatheoretic issuesEach chapter is limited to four pages, making the presentation very readableA unique feature of the book is its emphasis on applications to problems outside of set theory. Much of this material is currently only available in the primary literatureThe author is a pioneer in the application of set-theoretic methods to C*-algebra, having solved (together with various co-authors) Dixmier's “prime versus primitive” problem, Naimark's problem, Anderson's conjecture about pure states on B(H), and the Calkin algebra outer automorphism problemReviews: “The author presents the basics of the theory of forcing in a clear and stringent way by emphasizing important technical details and simplifying some definitions and arguments. Moreover, he presents the content in a way that should help beginners to understand the central concepts and avoid common mistakes.” Zentralblatt MATH

Full PDF Download Free

Privacy Policy

Copyright © 2018 Download PDF Site — Primer WordPress theme by GoDaddy