**Author**: Yu. I. Manin

**Publisher:**Springer Science & Business Media

**ISBN:**1441906150

**Category:**Mathematics

**Page:**384

**View:**2897

Skip to content
# Search Results for: a-course-in-mathematical-logic-for-mathematicians-second-edition-graduate-texts-in-mathematics

**Author**: Yu. I. Manin

**Publisher:** Springer Science & Business Media

**ISBN:** 1441906150

**Category:** Mathematics

**Page:** 384

**View:** 2897

1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
*Was sind und was sollen die Zahlen? Stetigkeit und Irrationale Zahlen*

**Author**: Stefan Müller-Stach

**Publisher:** Springer-Verlag

**ISBN:** 3662543397

**Category:** Mathematics

**Page:** 203

**View:** 6974

Die beiden Bücher „Was sind und was sollen die Zahlen?“ (1888) und „Stetigkeit und Irrationale Zahlen“ (1872) sind Dedekinds Beiträge zu den Grundlagen der Mathematik; er legte darin die Grundsteine der Mengenlehre und der Theorie der reellen und natürlichen Zahlen. Diese Schriften sind aus der modernen Mathematik nicht mehr wegzudenken. Dennoch wurde die Leistung Dedekinds nicht immer entsprechend gewürdigt und der Inhalt dieser Bücher ist auch heute noch vielen Mathematikern wenig bekannt. Dieses Buch enthält neben den Originaltexten eine ausführliche Erklärung der beiden Schriften und eine Interpretation in moderner Sprache, sowie eine kurze Biografie und eine Abschrift des berühmten Briefs an H. Keferstein. Dadurch bietet dieses Buch einen faszinierenden Einblick in das Leben und Schaffen dieses wegweisenden Wissenschaftlers und stellt sein Werk in Beziehung zu großen Zeitgenossen wie Cantor, Dirichlet, Frege, Hilbert, Kronecker und Riemann.

**Author**: Ernst Kunz

**Publisher:** Springer-Verlag

**ISBN:** 3322855260

**Category:** Mathematics

**Page:** 239

**View:** 9363

**Author**: Peter J. Hilton,Urs Stammbach

**Publisher:** Springer Science & Business Media

**ISBN:** 1441985662

**Category:** Mathematics

**Page:** 366

**View:** 5334

Homological algebra has found a large number of applications in many fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In the new edition of this broad introduction to the field, the authors address a number of select topics and describe their applications, illustrating the range and depth of their developments. A comprehensive set of exercises is included.

**Author**: Saunders Mac Lane

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387984032

**Category:** Mathematics

**Page:** 314

**View:** 8155

Categories for the Working Mathematician begins with foundations, illuminating concepts such as category, functor, natural transformation, and duality. It then continues by extensively illustrating these categorical concepts while presenting applications to more advanced topics. This second edition includes many revisions and additions.

**Author**: Ronald G. Douglas

**Publisher:** Springer Science & Business Media

**ISBN:** 1461216567

**Category:** Mathematics

**Page:** 198

**View:** 2083

A discussion of certain advanced topics in operator theory, providing the necessary background while assuming only standard senior-first year graduate courses in general topology, measure theory, and algebra. Each chapter ends with source notes which suggest additional reading along with comments on who proved what and when, followed by a large number of problems of varying difficulty. This new edition will appeal to a whole new generation of students seeking an introduction to this topic.

**Author**: V.I. Arnol'd

**Publisher:** Springer Science & Business Media

**ISBN:** 1475720637

**Category:** Mathematics

**Page:** 520

**View:** 4423

This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

**Author**: Steven Roman

**Publisher:** Springer Science & Business Media

**ISBN:** 0387276785

**Category:** Mathematics

**Page:** 335

**View:** 7187

"Springer has just released the second edition of Steven Roman’s Field Theory, and it continues to be one of the best graduate-level introductions to the subject out there....Every section of the book has a number of good exercises that would make this book excellent to use either as a textbook or to learn the material on your own. All in all...a well-written expository account of a very exciting area in mathematics." --THE MAA MATHEMATICAL SCIENCES DIGITAL LIBRARY
*A First Course*

**Author**: William Fulton

**Publisher:** Springer Science & Business Media

**ISBN:** 1461241804

**Category:** Mathematics

**Page:** 430

**View:** 7101

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

**Author**: Paul Malliavin

**Publisher:** Springer Science & Business Media

**ISBN:** 1461242029

**Category:** Mathematics

**Page:** 326

**View:** 1812

An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.

**Author**: Melvyn B. Nathanson

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387946559

**Category:** Mathematics

**Page:** 296

**View:** 8322

Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.

**Author**: Robert S. Wolf

**Publisher:** MAA

**ISBN:** 9780883850367

**Category:** Mathematics

**Page:** 397

**View:** 9784

The foundations of mathematics include mathematical logic, set theory, recursion theory, model theory, and Gdel's incompleteness theorems. Professor Wolf provides here a guide that any interested reader with some post-calculus experience in mathematics can read, enjoy, and learn from. It could also serve as a textbook for courses in the foundations of mathematics, at the undergraduate or graduate level. The book is deliberately less structured and more user-friendly than standard texts on foundations, so will also be attractive to those outside the classroom environment wanting to learn about the subject.

**Author**: Joseph R. Shoenfield

**Publisher:** CRC Press

**ISBN:** 135143330X

**Category:** Mathematics

**Page:** 356

**View:** 3732

This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
*On Numbers, Sets, Structures, and Symmetry*

**Author**: Roman Kossak

**Publisher:** Springer

**ISBN:** 9783319972978

**Category:** Mathematics

**Page:** 186

**View:** 8982

This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
*Mit ausführlichen Erklärungen und zahlreichen Beispielen*

**Author**: Martin Brandenburg

**Publisher:** Springer-Verlag

**ISBN:** 3662535211

**Category:** Mathematics

**Page:** 343

**View:** 3613

Die Kategorientheorie deckt die innere Architektur der Mathematik auf. Dabei werden die strukturellen Gemeinsamkeiten zwischen mathematischen Disziplinen und ihren spezifischen Konstruktionen herausgearbeitet. Dieses Buch gibt eine systematische Einführung in die Grundbegriffe der Kategorientheorie. Zahlreiche ausführliche Erklärungstexte sowie die große Menge an Beispielen helfen beim Einstieg in diese verhältnismäßig abstrakte Theorie. Es werden viele konkrete Anwendungen besprochen, welche die Nützlichkeit der Kategorientheorie im mathematischen Alltag belegen. Jedes Kapitel wird mit einem motivierenden Text eingeleitet und mit einer großen Aufgabensammlung abgeschlossen. An Vorwissen muss der Leser lediglich ein paar Grundbegriffe des Mathematik-Studiums mitbringen. Die vorliegende zweite vollständig durchgesehene Auflage ist um ausführliche Lösungen zu ausgewählten Aufgaben ergänzt.

**Author**: Morris W. Hirsch

**Publisher:** N.A

**ISBN:** N.A

**Category:** Mathematics

**Page:** 222

**View:** 3200

**Author**: Andrew Sterrett

**Publisher:** The Mathematical Association of America

**ISBN:** 0883857863

**Category:** Business & Economics

**Page:** 334

**View:** 5262

This third edition of the immensely popular 101 Careers in Mathematics contains updates on the career paths of individuals profiled in the first and second editions, along with many new profiles. No career counselor should be without this valuable resource. The authors of the essays in this volume describe a wide variety of careers for which a background in the mathematical sciences is useful. Each of the jobs presented shows real people in real jobs. Their individual histories demonstrate how the study of mathematics was useful in landing well-paying jobs in predictable places such as IBM, AT&T, and American Airlines, and in surprising places such as FedEx Corporation, L.L. Bean, and Perdue Farms, Inc. You will also learn about job opportunities in the Federal Government as well as exciting careers in the arts, sculpture, music, and television. There are really no limits to what you can do if you are well prepared in mathematics. The degrees earned by the authors profiled here range from bachelor’s to master’s to PhD in approximately equal numbers. Most of the writers use the mathematical sciences on a daily basis in their work. Others rely on the general problem-solving skills acquired in mathematics as they deal with complex issues.

**Author**: Rubén A. Martínez-Avendaño,Peter Rosenthal

**Publisher:** Springer Verlag

**ISBN:** N.A

**Category:** Mathematics

**Page:** 220

**View:** 2366

The subject of this book is operator theory on the Hardy space H2, also called the Hardy-Hilbert space. This is a popular area, partially because the Hardy-Hilbert space is the most natural setting for operator theory. A reader who masters the material covered in this book will have acquired a firm foundation for the study of all spaces of analytic functions and of operators on them. The goal is to provide an elementary and engaging introduction to this subject that will be readable by everyone who has understood introductory courses in complex analysis and in functional analysis. The exposition, blending techniques from "soft"and "hard" analysis, is intended to be as clear and instructive as possible. Many of the proofs are very elegant. This book evolved from a graduate course that was taught at the University of Toronto. It should prove suitable as a textbook for beginning graduate students, or even for well-prepared advanced undergraduates, as well as for independent study. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.

**Author**: A. S. Kechris

**Publisher:** N.A

**ISBN:** N.A

**Category:** Ensembles, Théorie des

**Page:** 402

**View:** 7312

**Author**: Steven Roman

**Publisher:** Springer

**ISBN:** N.A

**Category:** Mathematics

**Page:** 363

**View:** 3450

Full PDF Download Free

Privacy Policy

Copyright © 2019 Download PDF Site — Primer WordPress theme by GoDaddy