A Concise Course in Algebraic Topology


Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category: Mathematics
Page: 243
View: 8716

Continue Reading →

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

More Concise Algebraic Topology

Localization, Completion, and Model Categories
Author: J. P. May,K. Ponto
Publisher: University of Chicago Press
ISBN: 0226511782
Category: Mathematics
Page: 514
View: 2526

Continue Reading →

With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.

Topologie


Author: Erich Ossa
Publisher: Springer-Verlag
ISBN: 9783834808745
Category: Mathematics
Page: 276
View: 867

Continue Reading →

Das Ziel des Buches ist eine umfassende Einführung sowohl in die geometrische wie die algebraische Topologie. Dabei werden lediglich gute Kenntnisse aus dem 1. Studienjahr in der Mathematik vorausgesetzt, die über die Analysis und lineare Algebra kaum hinausgehen; alle weiteren Hilfsmittel, wie die Grundbegriffe der mengentheoretischen Topologie, die Theorie der topologischen Gruppen und die algebraischen Grundlagen werden ebenfalls ausführlich dargestellt. Im Vordergrund stehen jedoch nicht die hieraus hervorgehenden technischen Apparate, sondern die geometrischen Fragestellungen, die erst den Anlass zu ihrer Entwicklung gaben. Einführung - Allgemeine Topologie - Homotopie - Lie-Gruppen und homogene Räume - Homologie Bachelorstudierende der Mathematik (inkl. Lehramt) ab dem 2. Studienjahr Masterstudierende der Mathematik Professor Dr. Erich Ossa lehrt Mathematik an der Bergischen Universität Wuppertal.

Combinatorial Algebraic Topology


Author: Dimitry Kozlov
Publisher: Springer Science & Business Media
ISBN: 3540719628
Category: Mathematics
Page: 390
View: 2059

Continue Reading →

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Algebraische Topologie

Eine Einführung
Author: Ralph Stöcker,Heiner Zieschang
Publisher: Springer-Verlag
ISBN: 3322867854
Category: Mathematics
Page: 488
View: 4577

Continue Reading →

Liebe und Mathematik

Im Herzen einer verborgenen Wirklichkeit
Author: Edward Frenkel
Publisher: Springer-Verlag
ISBN: 3662434210
Category: Mathematics
Page: 317
View: 8237

Continue Reading →

Einführung in die Kategorientheorie

Mit ausführlichen Erklärungen und zahlreichen Beispielen
Author: Martin Brandenburg
Publisher: Springer-Verlag
ISBN: 3662535211
Category: Mathematics
Page: 343
View: 3959

Continue Reading →

Die Kategorientheorie deckt die innere Architektur der Mathematik auf. Dabei werden die strukturellen Gemeinsamkeiten zwischen mathematischen Disziplinen und ihren spezifischen Konstruktionen herausgearbeitet. Dieses Buch gibt eine systematische Einführung in die Grundbegriffe der Kategorientheorie. Zahlreiche ausführliche Erklärungstexte sowie die große Menge an Beispielen helfen beim Einstieg in diese verhältnismäßig abstrakte Theorie. Es werden viele konkrete Anwendungen besprochen, welche die Nützlichkeit der Kategorientheorie im mathematischen Alltag belegen. Jedes Kapitel wird mit einem motivierenden Text eingeleitet und mit einer großen Aufgabensammlung abgeschlossen. An Vorwissen muss der Leser lediglich ein paar Grundbegriffe des Mathematik-Studiums mitbringen. Die vorliegende zweite vollständig durchgesehene Auflage ist um ausführliche Lösungen zu ausgewählten Aufgaben ergänzt.

Einführung in die Geometrie und Topologie


Author: Werner Ballmann
Publisher: Springer-Verlag
ISBN: 3034809018
Category: Mathematics
Page: 162
View: 4039

Continue Reading →

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Books in Print


Author: N.A
Publisher: N.A
ISBN: N.A
Category: American literature
Page: N.A
View: 9152

Continue Reading →

Books in print is the major source of information on books currently published and in print in the United States. The database provides the record of forthcoming books, books in-print, and books out-of-print.

Algebraische Topologie

Homologie und Mannigfaltigkeiten
Author: Wolfgang Lück
Publisher: Springer-Verlag
ISBN: 3322802418
Category: Mathematics
Page: 266
View: 3390

Continue Reading →

Hauptgegenstand des Buches sind Homologie-, Kohomologietheorien und Mannigfaltigkeiten. In den ersten acht Kapiteln werden Begriffe wie Homologie, CW-Komplexe, Produkte und Poincaré Dualität eingeführt und deren Anwendungen diskutiert. In den davon unabhängigen Kapiteln 9 bis 13 werden Differentialformen und der Satz von Stokes auf Mannigfaltigkeiten behandelt. Die in Kapitel 14 und 15 behandelte de Rham Kohomologie und der Satz von de Rham verbinden diese beiden Teile.

Vektorbündel

Vom Möbius-Bündel bis zum J-Homomorphismus
Author: Karlheinz Knapp
Publisher: Springer-Verlag
ISBN: 365803114X
Category: Mathematics
Page: 595
View: 9566

Continue Reading →

Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte. Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen oder anwenden möchten.

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik
Author: Detlef Laugwitz
Publisher: Springer-Verlag
ISBN: 3034889836
Category: Mathematics
Page: 348
View: 1351

Continue Reading →

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."